Clustering in applications with multiple data sources - A mutual subspace clustering approach

نویسندگان

  • Ming Hua
  • Jian Pei
چکیده

In many applications, such as bioinformatics and cross-market customer relationship management, there are data from multiple sources jointly describing the same set of objects. An important data mining task is to find interesting groups of objects that form clusters in subspaces of the data sources jointly supported by those data sources. In this paper, we study a novel problem of mining mutual subspace clusters from multiple sources. We develop two interesting models and the corresponding methods for mutual subspace clustering. The density-based model identifies dense regions in subspaces as clusters. The bottom-up method searches for density-based mutual subspace clusters systematically from low-dimensional subspaces to high-dimensional ones. The partitioning model divides points in a data set into k exclusive clusters and a signature subspace is found for each cluster, where k is the number of clusters desired by a user. The top-down method interleaves the well-known k-means clustering procedures in multiple sources. We use experimental results on synthetic data sets and real data sets to report the effectiveness and the efficiency of the methods. & 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mutual Subspace Clustering Algorithm for High Dimensional Datasets

Generation of consistent clusters is always an interesting research issue in the field of knowledge and data engineering. In real applications, different similarity measures and different clustering techniques may be adopted in different clustering spaces. In such a case, it is very difficult or even impossible to define an appropriate similarity measure and clustering criteria in the union spa...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach

Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...

متن کامل

Subspace clustering for complex data

Clustering is an established data mining technique for grouping objects based on their mutual similarity. Since in today’s applications, however, usually many characteristics for each object are recorded, one cannot expect to find similar objects by considering all attributes together. In contrast, valuable clusters are hidden in subspace projections of the data. As a general solution to this p...

متن کامل

A Clustering Approach by SSPCO Optimization Algorithm Based on Chaotic Initial Population

Assigning a set of objects to groups such that objects in one group or cluster are more similar to each other than the other clusters’ objects is the main task of clustering analysis. SSPCO optimization algorithm is anew optimization algorithm that is inspired by the behavior of a type of bird called see-see partridge. One of the things that smart algorithms are applied to solve is the problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2012